Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
IEEE Trans Nanobioscience ; PP2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-1901510

ABSTRACT

Recent global outbreak of COVID-19 has raised serious awareness about our abilities to protect ourselves from hazardous pathogens and volatile organic compounds. Evidence suggests that personal protection equipment such as respiratory masks can radically decrease rates of transmission and infections due to contagious pathogens. To increase filtration efficiency without compromising breathability, application of nanofibers in production of respiratory masks have been proposed. The emergence of nanofibers in the industry has since introduced a next generation of respiratory masks that promises improved filtration efficiency and breathability via nanometric pores and thin fiber thickness. In addition, the surface of nanofibers can be functionalized and enhanced to capture specific particles. In addition to conventional techniques such as melt-blown, respiratory masks by nanofibers have provided an opportunity to prevent pathogen transmission. As the surge in global demand for respiratory masks increases, herein, we reviewed recent advancement of nanofibers as an alternative technique to be used in respiratory mask production.

2.
Environ Sci Pollut Res Int ; 29(53): 80411-80421, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1899264

ABSTRACT

As the world battles with the outbreak of the novel coronavirus, it also prepares for future global pandemics that threaten our health, economy, and survivor. During the outbreak, it became evident that use of personal protective equipment (PPE), specially face masks, can significantly slow the otherwise uncontrolled spread of the virus. Nevertheless, the outbreak and its new variants have caused shortage of PPE in many regions of the world. In addition, waste management of the enormous economical and environmental footprint of single use PPE has proven to be a challenge. Therefore, this study advances the theme of decontaminating used masks. More specifically, the effect of various decontamination techniques on the integrity and functionality of nanofiber-based N95 masks (i.e. capable of at least filtering 95% of 0.3 µm aerosols) were examined. These techniques include 70% ethanol, bleaching, boiling, steaming, ironing as well as placement in autoclave, oven, and exposure to microwave (MW) and ultraviolet (UV) light. Herein, filtration efficiency (by Particle Filtration Efficiency equipment), general morphology, and microstructure of nanofibers (by Field Emission Scanning Electron microscopy) prior and after every decontamination technique were observed. The results suggest that decontamination of masks with 70% ethanol can lead to significant unfavorable changes in the microstructure and filtration efficiency (down to 57.33%) of the masks. In other techniques such as bleaching, boiling, steaming, ironing and placement in the oven, filtration efficiency dropped to only about 80% and in addition, some morphological changes in the nanofiber microstructure were seen. Expectedly, there was no significant reduction in filtration efficiency nor microstructural changes in the case of placement in autoclave and exposure to the UV light. It was concluded that, the latter methods are preferable to decontaminate nanofiber-based N95 masks.


Subject(s)
COVID-19 , Nanofibers , Humans , N95 Respirators , Decontamination/methods , Respiratory Aerosols and Droplets , Steam , Ethanol
SELECTION OF CITATIONS
SEARCH DETAIL